
Export/Import JSON with Tom’s Planner

Introduction 2

Some basic settings 3

Timeline settings 4

The columns 5

The legend and logo 6

Print settings 7

The grid itself 8

Dependencies 11

Appendix A period and symbol codes 13

Appendix B durations and duration type 14

Appendix C change log 16

1

Introduction

JSON​ is the format we use to store the schedules in our database.

An export to json of your schedule contains all the information there

is (including project information, timeline settings, last used printing

settings etc.)

In this document we will describe the structure of version 15. In

Appendix C you will find a change log. If no version number is

available the JSON is from before version 1. If you open a schedule

in the tool and save it again it will automatically update the JSON

version to the most recent one.

Since there is no usable standard method to describe JSON

structures we use an example JSON document and we will just walk

you through it like a developer would do to another developer when

they work side by side.

We will mainly explain the details that are not immediately obvious

and will try to show with images which part of the JSON is linked to

which part in the schedule.The example we are using can be

downloaded at:

http://tomsplanner.com/documentation/example-json-version-15.tx

t​.

If you open this schedule it looks like this:

Unfortunately (and a bit embarrassingly) the use of capital letters in

the property names is not done consequently throughout the JSON

structure. So you will find the property name ‘hideWeekendDays’

capitalized but for instance the property name ‘referencedate’ is not

capitalized. Apologies for that.

2

http://www.json.org/
http://tomsplanner.com/documentation/example-json-version-15.txt
http://tomsplanner.com/documentation/example-json-version-15.txt

To be able to export to JSON you need a paid account of the

‘Unlimited’ type. If you however want to play around with the JSON

a bit first it’s good to know that in our ​demo​ you can save schedules

offline and with a free personal account you can open/import these

JSON files.

Some basic settings

{

"jsonversion":15,​/*see Appendix C for the change log*/

"settings":{

"defaultzoom":9,​/*the default zoom level of the schedule*/

/*the zoom level is online stored in the database per schedule/user

combination. If no zoom is available (for instance when you open a

schedule that has been stored locally as a file or when you import a

schedule) this default value is used. The following zoom levels are

available: 3=month, 4=week, 6=day(small), 8=day(medium),

9=day, 10=day(larger), 11=hour, 12=15 minutes, 13=10 minutes,

14=5 minutes */

"plugins":{

"groupduration":{"active":true},​/*show the duration of

a collapsed group in the chart*/

3

https://www.tomsplanner.com/?template=example

"specialcolumns":{"active":true}​/*enables user to use

special column types*/

}

},

"nature":"tomsplannermodel",​/*Needs to be included! Has no

specific meaning*/

Timeline settings

"timeline":​/*the settings of the blue timeline*/

{

"activeHourFrom":9,​/*start hour working day (integer)*/

"activeHourTo":17,​/*end hour working day (integer)*/

"type":"day",​/*possible values: day, hour, minutes15,

minutes10, minutes5. This relates to how you set durations in

the chart*

"firstWeekDay":1,​/*the start day of the week 0=sunday...

6=saturday*/

"showYear":true,​/*show line with year numbers in timeline*/

"showMonth":true,​/*show months in blue timeline*/

"showWeekNr":false,​/*show week numbers in blue timeline*/

"showDate":true,​/*show dates in blue timeline (1-31)*/

"showWeekDay":false,​/*show weekdays in blue timeline

(mon-sun)*/

"showHour":false,​/*hours in blue timeline*/

"showMinutes":false,​/*show minutes in blue timeline*/

/*Note: some combinations of visible elements in the timeline

are not possible and will cause errors. Just go to the timeline

settings panel and see which options are available with

different timeline types. For instance if you have a timeline of

the type ‘week’ you will not be able to show the line with

hours.* /

4

"hideWeekendDays":true, ​/*determines if weekenddays

should be hidden or shaded*/

/*shaded hidden*/

"activeDays":[false,true,true,true,true,true,false],​/*days in

the week that need to be visible in the schedule. The first day

is a Sunday and the last one is Saturday*/

"shadeDays":[false,false,false,false,false,false,false],

/*The days that need to be shaded in the schedule. The first

day is a Sunday and the last one is Saturday.*/

"timeFormat":"24hour", ​/* Determines how time looks in

the timeline. ‘24hour’ means two o’clock in the afternoon is 14

if this property is set to ‘12hour’ two o’clock in the afternoon

is 2*/

"markToday":true,​/*determines if today’s date is orange in

timeline*/

"leftBorderDate":"05/22/2020 00:00:00 GMT"​/*the horizontal

scroll position of the grid when this chart is being opened. So

in this example the left border of the blue timeline will be on

the 22nd of may*/

},

The Columns

"columns":[​/*Definition of the column area on the left side of your

schedule. Each column is an entry in this array and has

it’s own type (see image below) and a colwidth

property: */

{

"colwidth":99,​/*every column needs a width in pixels*/

"indent":true,​/*wether or not the texts in the column need to

be indented when it’s in a subgroup*/

"type":"text",​/*type can be “text”,”symbol”,”trafficlight”,

”startdate”,”enddate” or ”duration”*/

"full":"Activity"​/*the header of the columns*/

},

{

"colwidth":55,

"type":"startdate"

},

{

"colwidth":55,

5

"type":"enddate"

},

{

"colwidth":44,

"type":"symbol",

"full":"status",

"defaultvalue":0 ​/*determines the symbol that is added in this

column when a new row is inserted*/

},

{

"colwidth":30,

"type":"trafficlight",

"full":"",

"defaultvalue":2​/*0=no traffic light, 1=red, 2=orange,

3=green*/

}

],

The legend and Logo

/*The metadata refers to this part of the schedule: */

"metadata":[

{"label":"project:","labelvalue":"build new house"},

{"label":"project-number","labelvalue":"example-12"}

],

/*The legend is marked in the image below. There is one array with

the periods and one with symbols. Don’t mix them up.*/

6

"legenda":{

"periods":[

{"label":"contractor","type":"fa8115"},​/*The type is an

rgb color code.*/

{"label":"DIY","type":"a1c8f8"}

],

"symbols":[

{"label":"inspection","type":47},​/* See appendix B for

the symbol codes*/

{"label":"on track","type":2},

{"label":"delayed","type":1}

],

"bolDisplay":true​/*determines whether the legend (including

the logo and meta data is shown at the bottom of the tool)*/

},

/*The logo is shown in the left bottom corner of the tool. The file

name is not an url so you can’t include logos that are externally

hosted. The height of the logo needs to be given to avoid that the

legend needs to be re-rendered when the logo file is loaded*/

"logo":{

"bolshow":true,​/*is the logo visible in the legend or not*/

"filename":"dcfdb6e6-9a8a-4cbe-b768-87287ebc9621.png"

,"height":80 ​/*height of image file in pixels*/

},

Print settings

"printsetup":{

"format":"A4",​/*possible values: letter,A4,legal,A3,ledger, A2,

A1, A0*/

"orientation":"landscape",​/*possible values: landscape,

portrait*/

"colorscheme":"printerfriendly",​/*possible values:

printerfriendly, fullcolor*/

7

"zoomtofit":true,​/*determines if page should be

printed on one page (true) or multiple pages (false)*/

"range":{​/*if no range is defined the schedule will be printed

from the start to the end. But you can define a range that will

be printed*/

"startdate":"02/21/2012 00:00:00 GMT",

"enddate":"03/11/2012 00:00:00 GMT"

 }

},

The grid itself

/*The grid constitutes of five types of objects: “grid”, ”fase”

(group), “activity” (row), ”period” and “symbol”. The type is defined

by the ‘nature’ property of each object. Every object has a property

named “kids” which can contain other objects. A grid can contain

one fase, a fase can contain multiple activities and an activity can

contain multiple periods and symbols. Subgroups are defined by

setting an indentation level for an activity/row*/

"visualGrid":{

"nature":"grid",

"id":"grid",​/*this grid object has always an id: grid*/

"lastID":37,​/*every object in the schedule get’s an unique id:

‘grid_’+an integer. Every time a new object is added the

lastID counter is raised with one and used for the new id */

"kids":[{

/*this the root group and is a container which you won’t

see in the schedule itself, this is just a standard piece of

the json and is always the same*/

"nature":"fase",

"id":"grid_1",​/*this group object has always a id:

grid_1*/

"foldStatus":false,​/*this group object has always a

foldStatus: false*/

"type":"fe8519",​/*this group object has always a type:

fe8519*/

"kids":[

{

"nature":"fase",​/*first group in the schedule*/

"id":"grid_2",

"foldStatus":false,​/*determines if a group is collapsed or not*/

"type":"fe8519",​/*determines the background color of the group

header. This is an rgb color code*/

"kids":[{

"nature":"activity",​/*the first row and the group header*/

8

"id":"grid_3",

"autonumber":"1",​/*this property is used to enumerate the

rows. When a schedule is loaded into the tool this value will

be ignored and the value will always be recalculated*/

"indent":0,​/*indentation of the row. You can use indentation

to create subgroups in your chart. The first row in the group is

the header of the group so the indent can only be 0. The

second row (and first row under the group header) can not be

indented yet because each subgroup needs it’s header row so

the second row also always has an indent of 0. The third row

(and second row under the group header) can be the first row

in a subgroup and so it can have an indentation of 1*/

"kids":[],

"label":[​/*the label array contains the column data of the

specific row/activity*/

{"full":"build house"},​/*the first text column*/

{},​/*the start date column as has an empty object*/

{},​/*the end date column as has an empty object*/

{"colvalue":0},​/*the status column, see appendix A for

the symbol codes*/

{"colvalue":2}​/*the fifth column is of type ‘trafficlight,

0=no traffic light, 1=red, 2=orange, 3=green */

]

},{

"nature": "activity",​/*the second row in the chart right under

the group header row*/

"id":"grid_4",

"autonumber":"1.1",

"indent":0,

"kids":[{​/*the kids array of an activity can contain periods

 and symbols*/

"nature":"period",​/*the first orange time block in this

chart*/

"kids":[],

"id":"grid_33",

"type":"fa8115",​/*RGB code with the color of the time

block. */

"duration":6,​/* see appendix B of this

 document */

"durationtype":"day",​/* see appendix B of this

 document */

"startmoment":"05/25/2020 09:00:00 GMT",

"finishmoment":"05/27/2020 17:00:00 GMT",​/*the

duration overrides the finishmoment. Finishmoment is

result of startmoment, duration and durationtype*/

"label":"contractor"​/*optional property with the text

inside a time block*/

9

}],

"label":[

{"full":"build foundation"},

{},

{},

{"colvalue":2},

{"colvalue":3}

]},{

"nature": "activity",

"id":"grid_5",

"autonumber":"1.2",

"indent":0,

"kids":[

{"nature":"period",

"kids":[],

"id":"grid_34",

"type":"a1c8f8",

"duration":4,

"durationtype":"day",

"startmoment":"05/29/2020 09:00:00 GMT",

"finishmoment":"06/01/2020 17:00:00 GMT",

"comment":"include painting"​/*optional property with a

comment. Time blocks and icons can have comments*/

}],

"label":[

{"full":"construct walls"},

{},

{},

{"colvalue":2},

{"colvalue":2}

]},{

10

"nature": "activity",

"id":"grid_6",

"autonumber":"1.2.1",

"indent":1,​/*first row in a subgroup*/

"kids":[

{"nature":"symbol",

"kids":[],

"id":"grid_37",

"type":47,​/*see appendix A for the symbol codes*/

"moment":"06/04/2020 17:00:00 GMT",

"comment":"call supervisor"

},

{"nature":"period",

"kids":[],

"id":"grid_35",

"type":"a1c8f8",

"duration":4,

"durationtype":"day",

"startmoment":"06/03/2020 09:00:00 GMT",

"finishmoment":"06/04/2020 17:00:00 GMT"

}],

"label":[

{"full":"finish roof"},

{},

{},

{"colvalue":1},

{"colvalue":1}

]

}]}]}]},

Dependencies

"dependencies":[​/*This is where the dependencies between tiem

blocks and icons can be defined*/

{

"el":["grid_33","grid_34"],​/*id of the first period/symbol

that needs to be finished before the period/symbol with

the second id starts */

"type":"fs" ​/*type is fs “finish-start”, currently this is

the only supported type*/

11

},

{

"el":["grid_34","grid_35"],

"type":"fs"

}

]}

12

Appendix A icon codes​ co

l

13

Appendix B Durations and duration type

Durations are present in two ways in the json.

In the nestTotals properties of activities/rows:

 {

 "nature": "activity",

 "nestTotals": {

 "duration": 2,

 "last": "03/01/2012 13:00:00 GMT",

 "first": "02/29/2012 13:00:00 GMT"

 },

 …….

 }

The duration in this context is directly related to the timeline type

as defined in the timeline settings:

"timeline": {

 ….

 "type": "day",

 ….

}

Timeline type; Duration expressed

in:

month Days

week Weeks

day Days

hour Hours

15minutes Minutes

10minutes Minutes

5minutes Minutes

You will also encounter durations as a property of periods:

{

 "nature": "period",

 …

"duration": 13,

 …

}

14

The duration in this context is related to the drag & drop step size in

the tool itself. If you are working in a day schedule you can drag &

drop your periods and symbols with steps of half a day. So a

duration of one is equal to half a day.

Timeline type; A duration of one is equal

to:

month One day

week Half a week

day Half a day

hour Half an hour

15minutes 7.5 minutes

10minutes 5 minutes

5minutes 2.5 minutes

15

Appendix C change log

New in version 15 (july 2018)

Colors are not set as integers (pointing to a specific limited set of

colors) anymore but as rgb values (for instance: #ff0000 is red).

Enabling custom colors for groups and time blocks.

New in version 14

The dependencies section is added to the json (see above)

New in version 12

You can set which day is the first day in the week. The default value

is 1 (monday). Setting the first day of the week is done through the

property timeline.firstWeekDay.

New in version: 8

Added subgroups to Tom’s Planner. Each activity has a new

property called indentation which indicates the indentation of the

rows into subgroups. The indentation property is an integer. The

default value is zero.

New in version: 6 (21-5-2012)

1. The timeline types ‘month’ and ‘week’ are dismissed.

2. Default zoom is added as a property of settings.

New in version: 5

3. The lastID property has a correct value (can be incorrect in

older versions)

4. nestTotals property is added to activities

Version 1 through 4:

In some cases the lastID has an incorrect value. You need to fix this

programmatically before you are able to extend the schedule

New in version 4:

1. The property ‘settings’ is added to the root and has the

default value:

{plugins:{specialcolumns:{active:true},groupduration:{active

:true}}};

New in version 3:

The property ‘type’ is added to each column in the definition.

New in version 2:

1. The properties ‘markToday’ is added to the timelinesettings.

16

New in version 1:

2. The properties ‘hideWeekendDays’, ‘shadeDays’ and

‘timeFormat’ are added to the timelinesettings.

3. The property ‘colorscheme’ is added to the print setup.

4. The property ‘jsonversion’ is added to the root.

17

